Label Noise Cleansing with Sparse Graph for Hyperspectral Image Classification
نویسندگان
چکیده
منابع مشابه
Sparse graph-based transduction for image classification
Sparse Representation (SR) shows powerful discriminating power when the training samples are sufficient to construct an overcomplete dictionary. However, in the lack of training samples case, the dictionary is too small to sparsely represent the test sample which restricts the classification performance of sparse representation. In order to address this problem, we propose a new sparse represen...
متن کاملHyperspectral Image Classification Using Graph Clustering Methods
Hyperspectral imagery is a challenging modality due to the dimension of the pixels which can range from hundreds to over a thousand frequencies depending on the sensor. Most methods in the literature reduce the dimension of the data using a method such as principal component analysis, however this procedure can lose information. More recently methods have been developed to address classificatio...
متن کاملSpatial-Spectral Graph Regularized Kernel Sparse Representation for Hyperspectral Image Classification
This paper presents a spatial-spectral method for hyperspectral image classification in the regularization framework of kernel sparse representation. First, two spatial-spectral constraint terms are appended to the sparse recovery model of kernel sparse representation. The first one is a graph-based spatially-smooth constraint which is utilized to describe the contextual information of hyperspe...
متن کاملMultiscale Union Regions Adaptive Sparse Representation for Hyperspectral Image Classification
Sparse Representation has been widely applied to classification of hyperspectral images (HSIs). Besides spectral information, the spatial context in HSIs also plays an important role in the classification. The recently published Multiscale Adaptive Sparse Representation (MASR) classifier has shown good performance in exploiting spatial information for HSI classification. But the spatial informa...
متن کاملMultiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification †
Recently, superpixel segmentation has been proven to be a powerful tool for hyperspectral image (HSI) classification. Nonetheless, the selection of the optimal superpixel size is a nontrivial task. In addition, compared with single-scale superpixel segmentation, the same image segmented on a different scale can obtain different structure information. To overcome such a drawback also utilizing t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2019
ISSN: 2072-4292
DOI: 10.3390/rs11091116